[Practical Markov Chain Monte Carlo]: Rejoinder

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Authors’ rejoinder to Markov chain Monte Carlo: Some practical implications of theoretical results

1. Dirichlet process priors. Ishwaran has presented an analysis of a model (the Rasch model) using MCMC with Dirichlet process priors, following the approach of Escobar (1994) and MacEachern (1994). The analysis is a good example of how applied statisticians should approach such problems. Ishwaran is well informed about available theoretical results, and makes use of them where possible. At the...

متن کامل

Markov Chain Monte Carlo

Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...

متن کامل

Markov Chain Monte Carlo

This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.

متن کامل

Markov chain Monte Carlo

One of the simplest and most powerful practical uses of the ergodic theory of Markov chains is in Markov chain Monte Carlo (MCMC). Suppose we wish to simulate from a probability density π (which will be called the target density) but that direct simulation is either impossible or practically infeasible (possibly due to the high dimensionality of π). This generic problem occurs in diverse scient...

متن کامل

Practical Regeneration for Markov Chain Monte Carlo Simulation

Regeneration is a useful tool in Markov chain Monte Carlo simulation, since it can be used to side-step the burn-in problem and to construct estimates of the variance of parameter estimates themselves. Unfortunately, it is often diÆcult to take advantage of, since for most chains, no recurrent atom exists, and it is not always easy to use Nummelin's splitting method to identify regeneration poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 1992

ISSN: 0883-4237

DOI: 10.1214/ss/1177011147